1-1 Variables and Expressions

Write a verbal expression for each algebraic expression.

11. $4 q$

SOLUTION:

Because 4 and q are written next to each other, they are being multiplied. So, the verbal expressionfour times a number q can be used to describe the algebraic expression $4 q$.
13. $15+r$

SOLUTION:

The expression shows the sum of two terms. So, the verbal expression 15 plus r can be used to describe the algebraic expression $15+r$.
14. $w-24$

SOLUTION:
The expression shows the difference of two terms. So, the verbal expression w minus 24 can be used to describe the algebraic expression $w-24$.
17. $2 a+6$

SOLUTION:
The expression shows the sum of two terms. The term $2 a$ represents the product of 2 and a. So, the verbal expression 6 more than the product 2 times a can be used to describe the algebraic expression $2 a+6$.

Write an algebraic expression for each verbal expression.
20. a number less 35

SOLUTION:

Let n represent a number. The word less suggests subtraction. So, the verbal expression a number less 35 can be represented by the algebraic expression $n-35$.
22. one third of a number

SOLUTION:

Let n represent a number. The words one third of a number suggest multiplication. So, the verbal expression one third of a number can be represented by the algebraic expression $\frac{1}{3} n$.
24. the quotient of 45 and r

SOLUTION:
The word quotient suggests division. So, the verbal expression the quotient of 45 and r can be represented by the algebraic expression $\frac{45}{r}$.
26. 18 decreased by 3 times d

SOLUTION:

The word decreased suggests subtraction, and the word times suggests multiplication. So, the verbal expression 18 decreased by 3 times d can be represented by the algebraic expression $18-3 d$.

1-1 Variables and Expressions

28. 20 divided by t to the fifth power

SOLUTION:

The words divided by suggest division. So, the verbal expression 20 divided by to the fifth power can be represented by the algebraic expression $\frac{20}{t^{5}}$.
40. ERROR ANALYSIS Consuelo and James are writing an algebraic expression for the verbal expression three times the sum of n squared and 3. Is either of them correct? Explain your reasoning.

SOLUTION:

Consuelo is correct. The verbal expression says that the sum of n squared and 3 is multiplied by 3 . So, parentheses are necessary. James left out the parentheses around $n^{2}+3$.

1-1 Variables and Expressions

41. ORGANIZE IDEAS For the cube, x represents a positive whole number. Find the value of x such that the volume of the cube and 6 times the area of one of its faces have the same value.

SOLUTION:

The volume of a cube can be found by multiplying the length times the width times the height. Because the sides of a cube all have the same length, $V=x \bullet x \bullet x$, or x^{3}. The area of one of the faces of the cube can be found by multiplying the length times the width. So, $A=x \cdot x$, or x^{2}.

To find the value of x such that the volume of the cube and 6 times the area of one of its faces have the same value, find a value for x such that $x^{3}=6 x^{2}$.

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{3}}=\mathbf{6 x}^{\mathbf{2}}$	Yes/No
4	$x^{3}=6 x^{2}$	No
	$4^{3}=6\left(4^{2}\right)$	
	$64 \neq 96$	
6	$x^{3}=6 x^{2}$	Yes
	$6^{3}=6\left(6^{2}\right)$	
	$216=216$	

So, the sides must have a length of 6 for the volume of the cube and 6 times the area of one of its faces to have the same value.
43. What is an equation for "five more than the product of 7 and a number t is 10 ?"

A $5>7 t+10$
B $7 t+5=10$
C $5 t+7=10$
D $5 \cdot 7 t+10$
SOLUTION:
First look at "the product of 7 and a number t. ." Product means to multiply, so "the product of 7 and a number t " is 7 . t or $7 t$.

Then look at "five more than." More than means to add, so "five more than" means to add 5 making the left side of the equation is $7 t+5$.

Next look at "is 10 ." Is means equals, so "is 10 " means the expression is equal to 10 making the equation $7 t+5=10$. So, choice B is the correct answer.

1-1 Variables and Expressions

44. The volume of this cube can be expressed as 5^{3}.

Which equation can be used to find the volume of a cube with edges that are x units shorter?
F $V=(x-5)^{3}$
$\mathbf{G} V=5^{3}-x^{3}$
H $V=(5-x)^{3}$
J 5-x

SOLUTION:

To find the volume of a cube, raise the side length to the third power. If the side length is x units shorter than 5 , the expression for the side length is $5-x$. To raise $5-x$ to the third power, make sure to raise the entire expression to the third power. So the equation for the volume would be $V=(5-x)^{3}$.

The correct answer is choice H.
45. Elsie buys a pizza for $\$ 16$ and several bottles of water for $\$ 2$ each. Let C represent the total amount of money that Elsie spends and let w represent how many bottles of water she buys. Which equation best represents this situation?

A $C=2+16 w$
B $C=16+2+w$
C $C=16+2 w$
D $C=2(w+16)$

SOLUTION:

Let C represent the total cost and w represent the number of bottles of water. If Elsie buys a $\$ 16$ pizza and some $\$ 2$ bottles of water, add $2 w$ to 16 to find the total amount of money she spends. $C=16+2 w$

So, the correct answer is choice C .

1-1 Variables and Expressions

46. Which equation best describes the data in the table?

x	8	4	2
y	2	-2	-4

F $y=x \div 2$
Gy $y=-0.5 x$
$\mathbf{H} y=x+6$
J $y=x-6$
SOLUTION:
Try each equation to see if it fits with all of the data points in the table.

x	8	4	2
$x \div 2$	4	2	1

This equation does not work for any of the data points. So it is not the correct answer.

x	8	4	2
$-0.5 x$	-4	-2	-1

This equation only works for the second data point. So it is not the correct answer.

x	8	4	2
$x+6$	14	10	8

This equation does not work for any of the data points. So it is not the correct answer.

x	8	4	2
$x-6$	2	-2	-4

This equation works for all of the data points. So choice J is the correct answer.

