Write a verbal expression for each algebraic expression.

11. 4*q*

SOLUTION:

Because 4 and q are written next to each other, they are being multiplied. So, the verbal expression *four times a number q* can be used to describe the algebraic expression 4q.

13. 15 + r

SOLUTION:

The expression shows the sum of two terms. So, the verbal expression 15 plus r can be used to describe the algebraic expression 15 + r.

14. w - 24

SOLUTION:

The expression shows the difference of two terms. So, the verbal expression w minus 24 can be used to describe the algebraic expression w - 24.

17. 2a + 6

SOLUTION:

The expression shows the sum of two terms. The term 2a represents the product of 2 and a. So, the verbal expression 6 more than the product 2 times a can be used to describe the algebraic expression 2a + 6.

Write an algebraic expression for each verbal expression.

20. a number less 35

SOLUTION:

Let *n* represent a number. The word *less* suggests subtraction. So, the verbal expression *a number less* 35 can be represented by the algebraic expression n - 35.

22. one third of a number

SOLUTION:

Let n represent a number. The words one third of a number suggest multiplication. So, the verbal expression one

third of a number can be represented by the algebraic expression $\frac{1}{2}n$.

24. the quotient of 45 and r

SOLUTION:

The word *quotient* suggests division. So, the verbal expression *the quotient of 45 and r* can be represented by the algebraic expression $\frac{45}{r}$.

26. 18 decreased by 3 times d

SOLUTION:

The word *decreased* suggests subtraction, and the word *times* suggests multiplication. So, the verbal expression 18 *decreased by 3 times d* can be represented by the algebraic expression 18 - 3d.

<u>1-1 Variables and Expressions</u>

28. 20 divided by *t* to the fifth power

SOLUTION:

The words *divided by* suggest division. So, the verbal expression 20 *divided by t to the fifth power* can be represented by the algebraic expression $\frac{20}{t^*}$.

40. **ERROR ANALYSIS** Consuelo and James are writing an algebraic expression for the verbal expression *three times the sum of n squared and 3*. Is either of them correct? Explain your reasoning.

SOLUTION:

Consuelo is correct. The verbal expression says that the sum of *n* squared and 3 is multiplied by 3. So, parentheses are necessary. James left out the parentheses around $n^2 + 3$.

41. **ORGANIZE IDEAS** For the cube, *x* represents a positive whole number. Find the value of *x* such that the volume of the cube and 6 times the area of one of its faces have the same value.

SOLUTION:

The volume of a cube can be found by multiplying the length times the width times the height. Because the sides of a cube all have the same length, $V = x \cdot x \cdot x$, or x^3 . The area of one of the faces of the cube can be found by multiplying the length times the width. So, $A = x \cdot x$, or x^2 .

To find the value of x such that the volume of the cube and 6 times the area of one of its faces have the same value, find a value for x such that $x^3 = 6x^2$.

x	$x^3 = 6x^2$	Yes/No
4	$x^3 = 6x^2$	No
	$4^{3} \stackrel{?}{=} 6(4^{2})$	
	64 ≠ 96	
6	$x^3 = 6x^2$	Yes
	$6^3 \stackrel{?}{=} 6(6^2)$	
	216 = 216	

So, the sides must have a length of 6 for the volume of the cube and 6 times the area of one of its faces to have the same value.

43. What is an equation for "five more than the product of 7 and a number *t* is 10?"

A 5 > 7t + 10 **B** 7t + 5 = 10 **C** 5t + 7 = 10**D** $5 \cdot 7t + 10$

SOLUTION:

First look at "the product of 7 and a number *t*." Product means to multiply, so "the product of 7 and a number *t*" is $7 \cdot t$ or 7t.

Then look at "five more than." More than means to add, so "five more than" means to add 5 making the left side of the equation is 7t + 5.

Next look at "is 10." Is means equals, so "is 10" means the expression is equal to 10 making the equation 7t + 5 = 10. So, choice B is the correct answer.

44. The volume of this cube can be expressed as 5^3 .

Which equation can be used to find the volume of a cube with edges that are *x* units shorter?

F $V = (x - 5)^{3}$ **G** $V = 5^{3} - x^{3}$ **H** $V = (5 - x)^{3}$ **J** 5 - x

SOLUTION:

To find the volume of a cube, raise the side length to the third power. If the side length is *x* units shorter than 5, the expression for the side length is 5 - x. To raise 5 - x to the third power, make sure to raise the entire expression to the third power. So the equation for the volume would be $V = (5 - x)^3$.

The correct answer is choice H.

45. Elsie buys a pizza for \$16 and several bottles of water for \$2 each. Let *C* represent the total amount of money that Elsie spends and let *w* represent how many bottles of water she buys. Which equation best represents this situation?

A C = 2 + 16w **B** C = 16 + 2 + w **C** C = 16 + 2w**D** C = 2(w + 16)

SOLUTION:

Let *C* represent the total cost and *w* represent the number of bottles of water. If Elsie buys a \$16 pizza and some \$2 bottles of water, add 2w to 16 to find the total amount of money she spends. C = 16 + 2w

So, the correct answer is choice C.

46. Which equation best describes the data in the table?

x	8	4	2
y	2	-2	-4

F $y = x \div 2$ **G** y = -0.5x **H** y = x + 6**J** y = x - 6

SOLUTION:

Try each equation to see if it fits with all of the data points in the table.

x	8	4	2
$x \div 2$	4	2	1

This equation does not work for any of the data points. So it is not the correct answer.

x	8	4	2
-0.5x	-4	-2	-1

This equation only works for the second data point. So it is not the correct answer.

x	8	4	2
<i>x</i> + 6	14	10	8

This equation does not work for any of the data points. So it is not the correct answer.

x	8	4	2
<i>x</i> – 6	2	-2	-4

This equation works for all of the data points. So choice J is the correct answer.